Math 254-2 Exam 10 Solutions

1. Carefully define the term "dependent". Give two examples in \mathbb{R}^{2}.

A set of vectors is dependent if there is a nondegenerate linear combination yielding the zero vector. Examples in \mathbb{R}^{2} include $\{(0,0)\},\{(1,1),(2,2)\}$, $\{(1,0),(0,1),(2,3)\}$.

For the next two problems, consider the matrix $A=\left(\begin{array}{ccc}2 & 2 & -1 \\ 1 & 0 & 2 \\ 0 & 1 & -3\end{array}\right)$.
2. Calculate $|A|$ by using the formula for 3×3 determinants.

$$
\begin{aligned}
& \text { We have }|A|=(2)(0)(-3)+(2)(2)(0)+(-1)(1)(1)-(0)(0)(-1)-(1)(2)(2)- \\
& (-3)(1)(2)=-1-4+6=1
\end{aligned}
$$

3. Calculate $|A|$ by expanding on the second column.

We have $|A|=2(-1)^{1+2}\left|\begin{array}{ll}1 & 2 \\ 0 & -3\end{array}\right|+0(-1)^{2+2}\left|\begin{array}{ll}2 & -1 \\ 0 & -3\end{array}\right|+1(-1)^{3+2}\left|\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right|=-2\left|\begin{array}{cc}1 & 2 \\ 0 & -3\end{array}\right|-$ $\left|\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right|=-2(-3-0)-(4-(-1))=-2(-3)-(5)=1$.
4. Solve the linear system $\left\{\begin{aligned} 2 x+y & =5 \\ -2 x+y & =1\end{aligned}\right\}$ using Cramer's rule.

Cramer's rule gives $x=\frac{\left|\begin{array}{cc}5 & 1 \\ 1 & 1\end{array}\right|}{\left|\begin{array}{ll}2 & 1 \\ -2 & 1\end{array}\right|}=\frac{4}{4}=1, y=\frac{\left|\begin{array}{cc}2 & 5 \\ -2 & 1\end{array}\right|}{2} \begin{aligned} & 1 \\ & -2\end{aligned} 1\left|\begin{array}{l}1\end{array}\right|=\frac{12}{4}=3$.
5. Find $|B|$, for $B=\left(\begin{array}{ccccc}2 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & -1 \\ 0 & 2 & 0 & -2 & 0 \\ 4 & 0 & 1 & 0 & 0 \\ 1 & 1 & -2 & 0 & 1\end{array}\right)$.

Many approaches are possible. To do this efficiently requires a combination of elementary row/column operations and Laplace expansions. Adding the second column to the fourth gives the matrix $C=\left(\begin{array}{ccccc}2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & -1 \\ 0 & 2 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 1 \\ 1 & 1 & -2 & 1 & 3\end{array}\right) .|B|=$ $|C|$, and we find $|C|$ by expanding on the third row: $|C|=2 C_{32}$, where $C_{32}=(-1)^{3+2}|D|$, for $D=\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 1 & -1 \\ 4 & 1 & 0 & 1 \\ 1 & -2 & 1 & 3\end{array}\right)$. We find $|D|$ by expanding on the first row: $|D|=(2) D_{11}$, where $D_{11}=(-1)^{1+1}|E|$, for $E=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 0 & 1 \\ -2 & 1 & 3\end{array}\right)$. We now calculate $|E|=0+(-2)+(-1)-0-2-3=-8$. Hence $|D|=-16,|C|=$ $|B|=32$.

